This key's fingerprint is A04C 5E09 ED02 B328 03EB 6116 93ED 732E 9231 8DBA

-----BEGIN PGP PUBLIC KEY BLOCK-----

mQQNBFUoCGgBIADFLp+QonWyK8L6SPsNrnhwgfCxCk6OUHRIHReAsgAUXegpfg0b
rsoHbeI5W9s5to/MUGwULHj59M6AvT+DS5rmrThgrND8Dt0dO+XW88bmTXHsFg9K
jgf1wUpTLq73iWnSBo1m1Z14BmvkROG6M7+vQneCXBFOyFZxWdUSQ15vdzjr4yPR
oMZjxCIFxe+QL+pNpkXd/St2b6UxiKB9HT9CXaezXrjbRgIzCeV6a5TFfcnhncpO
ve59rGK3/az7cmjd6cOFo1Iw0J63TGBxDmDTZ0H3ecQvwDnzQSbgepiqbx4VoNmH
OxpInVNv3AAluIJqN7RbPeWrkohh3EQ1j+lnYGMhBktX0gAyyYSrkAEKmaP6Kk4j
/ZNkniw5iqMBY+v/yKW4LCmtLfe32kYs5OdreUpSv5zWvgL9sZ+4962YNKtnaBK3
1hztlJ+xwhqalOCeUYgc0Clbkw+sgqFVnmw5lP4/fQNGxqCO7Tdy6pswmBZlOkmH
XXfti6hasVCjT1MhemI7KwOmz/KzZqRlzgg5ibCzftt2GBcV3a1+i357YB5/3wXE
j0vkd+SzFioqdq5Ppr+//IK3WX0jzWS3N5Lxw31q8fqfWZyKJPFbAvHlJ5ez7wKA
1iS9krDfnysv0BUHf8elizydmsrPWN944Flw1tOFjW46j4uAxSbRBp284wiFmV8N
TeQjBI8Ku8NtRDleriV3djATCg2SSNsDhNxSlOnPTM5U1bmh+Ehk8eHE3hgn9lRp
2kkpwafD9pXaqNWJMpD4Amk60L3N+yUrbFWERwncrk3DpGmdzge/tl/UBldPoOeK
p3shjXMdpSIqlwlB47Xdml3Cd8HkUz8r05xqJ4DutzT00ouP49W4jqjWU9bTuM48
LRhrOpjvp5uPu0aIyt4BZgpce5QGLwXONTRX+bsTyEFEN3EO6XLeLFJb2jhddj7O
DmluDPN9aj639E4vjGZ90Vpz4HpN7JULSzsnk+ZkEf2XnliRody3SwqyREjrEBui
9ktbd0hAeahKuwia0zHyo5+1BjXt3UHiM5fQN93GB0hkXaKUarZ99d7XciTzFtye
/MWToGTYJq9bM/qWAGO1RmYgNr+gSF/fQBzHeSbRN5tbJKz6oG4NuGCRJGB2aeXW
TIp/VdouS5I9jFLapzaQUvtdmpaeslIos7gY6TZxWO06Q7AaINgr+SBUvvrff/Nl
l2PRPYYye35MDs0b+mI5IXpjUuBC+s59gI6YlPqOHXkKFNbI3VxuYB0VJJIrGqIu
Fv2CXwy5HvR3eIOZ2jLAfsHmTEJhriPJ1sUG0qlfNOQGMIGw9jSiy/iQde1u3ZoF
so7sXlmBLck9zRMEWRJoI/mgCDEpWqLX7hTTABEBAAG0x1dpa2lMZWFrcyBFZGl0
b3JpYWwgT2ZmaWNlIEhpZ2ggU2VjdXJpdHkgQ29tbXVuaWNhdGlvbiBLZXkgKFlv
dSBjYW4gY29udGFjdCBXaWtpTGVha3MgYXQgaHR0cDovL3dsY2hhdGMzcGp3cGxp
NXIub25pb24gYW5kIGh0dHBzOi8vd2lraWxlYWtzLm9yZy90YWxrKSA8Y29udGFj
dC11cy11c2luZy1vdXItY2hhdC1zeXN0ZW1Ad2lraWxlYWtzLm9yZz6JBD0EEwEK
ACcCGwMFCwkIBwMFFQoJCAsFFgIDAQACHgECF4AFAlb6cdIFCQOznOoACgkQk+1z
LpIxjbrlqh/7B2yBrryWhQMGFj+xr9TIj32vgUIMohq94XYqAjOnYdEGhb5u5B5p
BNowcqdFB1SOEvX7MhxGAqYocMT7zz2AkG3kpf9f7gOAG7qA1sRiB+R7mZtUr9Kv
fQSsRFPb6RNzqqB9I9wPNGhBh1YWusUPluLINwbjTMnHXeL96HgdLT+fIBa8ROmn
0fjJVoWYHG8QtsKiZ+lo2m/J4HyuJanAYPgL6isSu/1bBSwhEIehlQIfXZuS3j35
12SsO1Zj2BBdgUIrADdMAMLneTs7oc1/PwxWYQ4OTdkay2deg1g/N6YqM2N7rn1W
7A6tmuH7dfMlhcqw8bf5veyag3RpKHGcm7utDB6k/bMBDMnKazUnM2VQoi1mutHj
kTCWn/vF1RVz3XbcPH94gbKxcuBi8cjXmSWNZxEBsbirj/CNmsM32Ikm+WIhBvi3
1mWvcArC3JSUon8RRXype4ESpwEQZd6zsrbhgH4UqF56pcFT2ubnqKu4wtgOECsw
K0dHyNEiOM1lL919wWDXH9tuQXWTzGsUznktw0cJbBVY1dGxVtGZJDPqEGatvmiR
o+UmLKWyxTScBm5o3zRm3iyU10d4gka0dxsSQMl1BRD3G6b+NvnBEsV/+KCjxqLU
vhDNup1AsJ1OhyqPydj5uyiWZCxlXWQPk4p5WWrGZdBDduxiZ2FTj17hu8S4a5A4
lpTSoZ/nVjUUl7EfvhQCd5G0hneryhwqclVfAhg0xqUUi2nHWg19npPkwZM7Me/3
+ey7svRUqxVTKbXffSOkJTMLUWqZWc087hL98X5rfi1E6CpBO0zmHeJgZva+PEQ/
ZKKi8oTzHZ8NNlf1qOfGAPitaEn/HpKGBsDBtE2te8PF1v8LBCea/d5+Umh0GELh
5eTq4j3eJPQrTN1znyzpBYkR19/D/Jr5j4Vuow5wEE28JJX1TPi6VBMevx1oHBuG
qsvHNuaDdZ4F6IJTm1ZYBVWQhLbcTginCtv1sadct4Hmx6hklAwQN6VVa7GLOvnY
RYfPR2QA3fGJSUOg8xq9HqVDvmQtmP02p2XklGOyvvfQxCKhLqKi0hV9xYUyu5dk
2L/A8gzA0+GIN+IYPMsf3G7aDu0qgGpi5Cy9xYdJWWW0DA5JRJc4/FBSN7xBNsW4
eOMxl8PITUs9GhOcc68Pvwyv4vvTZObpUjZANLquk7t8joky4Tyog29KYSdhQhne
oVODrdhTqTPn7rjvnwGyjLInV2g3pKw/Vsrd6xKogmE8XOeR8Oqk6nun+Y588Nsj
XddctWndZ32dvkjrouUAC9z2t6VE36LSyYJUZcC2nTg6Uir+KUTs/9RHfrvFsdI7
iMucdGjHYlKc4+YwTdMivI1NPUKo/5lnCbkEDQRVKAhoASAAvnuOR+xLqgQ6KSOO
RTkhMTYCiHbEsPmrTfNA9VIip+3OIzByNYtfFvOWY2zBh3H2pgf+2CCrWw3WqeaY
wAp9zQb//rEmhwJwtkW/KXDQr1k95D5gzPeCK9R0yMPfjDI5nLeSvj00nFF+gjPo
Y9Qb10jp/Llqy1z35Ub9ZXuA8ML9nidkE26KjG8FvWIzW8zTTYA5Ezc7U+8HqGZH
VsK5KjIO2GOnJiMIly9MdhawS2IXhHTV54FhvZPKdyZUQTxkwH2/8QbBIBv0OnFY
3w75Pamy52nAzI7uOPOU12QIwVj4raLC+DIOhy7bYf9pEJfRtKoor0RyLnYZTT3N
0H4AT2YeTra17uxeTnI02lS2Jeg0mtY45jRCU7MrZsrpcbQ464I+F411+AxI3NG3
cFNJOJO2HUMTa+2PLWa3cERYM6ByP60362co7cpZoCHyhSvGppZyH0qeX+BU1oyn
5XhT+m7hA4zupWAdeKbOaLPdzMu2Jp1/QVao5GQ8kdSt0n5fqrRopO1WJ/S1eoz+
Ydy3dCEYK+2zKsZ3XeSC7MMpGrzanh4pk1DLr/NMsM5L5eeVsAIBlaJGs75Mp+kr
ClQL/oxiD4XhmJ7MlZ9+5d/o8maV2K2pelDcfcW58tHm3rHwhmNDxh+0t5++i30y
BIa3gYHtZrVZ3yFstp2Ao8FtXe/1ALvwE4BRalkh+ZavIFcqRpiF+YvNZ0JJF52V
rwL1gsSGPsUY6vsVzhpEnoA+cJGzxlor5uQQmEoZmfxgoXKfRC69si0ReoFtfWYK
8Wu9sVQZW1dU6PgBB30X/b0Sw8hEzS0cpymyBXy8g+itdi0NicEeWHFKEsXa+HT7
mjQrMS7c84Hzx7ZOH6TpX2hkdl8Nc4vrjF4iff1+sUXj8xDqedrg29TseHCtnCVF
kfRBvdH2CKAkbgi9Xiv4RqAP9vjOtdYnj7CIG9uccek/iu/bCt1y/MyoMU3tqmSJ
c8QeA1L+HENQ/HsiErFGug+Q4Q1SuakHSHqBLS4TKuC+KO7tSwXwHFlFp47GicHe
rnM4v4rdgKic0Z6lR3QpwoT9KwzOoyzyNlnM9wwnalCLwPcGKpjVPFg1t6F+eQUw
WVewkizhF1sZBbED5O/+tgwPaD26KCNuofdVM+oIzVPOqQXWbaCXisNYXoktH3Tb
0X/DjsIeN4TVruxKGy5QXrvo969AQNx8Yb82BWvSYhJaXX4bhbK0pBIT9fq08d5R
IiaN7/nFU3vavXa+ouesiD0cnXSFVIRiPETCKl45VM+f3rRHtNmfdWVodyXJ1O6T
ZjQTB9ILcfcb6XkvH+liuUIppINu5P6i2CqzRLAvbHGunjvKLGLfvIlvMH1mDqxp
VGvNPwARAQABiQQlBBgBCgAPAhsMBQJW+nHeBQkDs5z2AAoJEJPtcy6SMY26Qtgf
/0tXRbwVOBzZ4fI5NKSW6k5A6cXzbB3JUxTHMDIZ93CbY8GvRqiYpzhaJVjNt2+9
zFHBHSfdbZBRKX8N9h1+ihxByvHncrTwiQ9zFi0FsrJYk9z/F+iwmqedyLyxhIEm
SHtWiPg6AdUM5pLu8GR7tRHagz8eGiwVar8pZo82xhowIjpiQr0Bc2mIAusRs+9L
jc+gjwjbhYIg2r2r9BUBGuERU1A0IB5Fx+IomRtcfVcL/JXSmXqXnO8+/aPwpBuk
bw8sAivSbBlEu87P9OovsuEKxh/PJ65duQNjC+2YxlVcF03QFlFLGzZFN7Fcv5JW
lYNeCOOz9NP9TTsR2EAZnacNk75/FYwJSJnSblCBre9xVA9pI5hxb4zu7CxRXuWc
QJs8Qrvdo9k4Jilx5U9X0dsiNH2swsTM6T1gyVKKQhf5XVCS4bPWYagXcfD9/xZE
eAhkFcAuJ9xz6XacT9j1pw50MEwZbwDneV93TqvHmgmSIFZow1aU5ACp+N/ksT6E
1wrWsaIJjsOHK5RZj/8/2HiBftjXscmL3K8k6MbDI8P9zvcMJSXbPpcYrffw9A6t
ka9skmLKKFCcsNJ0coLLB+mw9DVQGc2dPWPhPgtYZLwG5tInS2bkdv67qJ4lYsRM
jRCW5xzlUZYk6SWD4KKbBQoHbNO0Au8Pe/N1SpYYtpdhFht9fGmtEHNOGPXYgNLq
VTLgRFk44Dr4hJj5I1+d0BLjVkf6U8b2bN5PcOnVH4Mb+xaGQjqqufAMD/IFO4Ro
TjwKiw49pJYUiZbw9UGaV3wmg+fue9To1VKxGJuLIGhRXhw6ujGnk/CktIkidRd3
5pAoY5L4ISnZD8Z0mnGlWOgLmQ3IgNjAyUzVJRhDB5rVQeC6qX4r4E1xjYMJSxdz
Aqrk25Y//eAkdkeiTWqbXDMkdQtig2rY+v8GGeV0v09NKiT+6extebxTaWH4hAgU
FR6yq6FHs8mSEKC6Cw6lqKxOn6pwqVuXmR4wzpqCoaajQVz1hOgD+8QuuKVCcTb1
4IXXpeQBc3EHfXJx2BWbUpyCgBOMtvtjDhLtv5p+4XN55GqY+ocYgAhNMSK34AYD
AhqQTpgHAX0nZ2SpxfLr/LDN24kXCmnFipqgtE6tstKNiKwAZdQBzJJlyYVpSk93
6HrYTZiBDJk4jDBh6jAx+IZCiv0rLXBM6QxQWBzbc2AxDDBqNbea2toBSww8HvHf
hQV/G86Zis/rDOSqLT7e794ezD9RYPv55525zeCk3IKauaW5+WqbKlwosAPIMW2S
kFODIRd5oMI51eof+ElmB5V5T9lw0CHdltSM/hmYmp/5YotSyHUmk91GDFgkOFUc
J3x7gtxUMkTadELqwY6hrU8=
=BLTH
-----END PGP PUBLIC KEY BLOCK-----
		

Contact

If you need help using Tor you can contact WikiLeaks for assistance in setting it up using our simple webchat available at: https://wikileaks.org/talk

If you can use Tor, but need to contact WikiLeaks for other reasons use our secured webchat available at http://wlchatc3pjwpli5r.onion

We recommend contacting us over Tor if you can.

Tor

Tor is an encrypted anonymising network that makes it harder to intercept internet communications, or see where communications are coming from or going to.

In order to use the WikiLeaks public submission system as detailed above you can download the Tor Browser Bundle, which is a Firefox-like browser available for Windows, Mac OS X and GNU/Linux and pre-configured to connect using the anonymising system Tor.

Tails

If you are at high risk and you have the capacity to do so, you can also access the submission system through a secure operating system called Tails. Tails is an operating system launched from a USB stick or a DVD that aim to leaves no traces when the computer is shut down after use and automatically routes your internet traffic through Tor. Tails will require you to have either a USB stick or a DVD at least 4GB big and a laptop or desktop computer.

Tips

Our submission system works hard to preserve your anonymity, but we recommend you also take some of your own precautions. Please review these basic guidelines.

1. Contact us if you have specific problems

If you have a very large submission, or a submission with a complex format, or are a high-risk source, please contact us. In our experience it is always possible to find a custom solution for even the most seemingly difficult situations.

2. What computer to use

If the computer you are uploading from could subsequently be audited in an investigation, consider using a computer that is not easily tied to you. Technical users can also use Tails to help ensure you do not leave any records of your submission on the computer.

3. Do not talk about your submission to others

If you have any issues talk to WikiLeaks. We are the global experts in source protection – it is a complex field. Even those who mean well often do not have the experience or expertise to advise properly. This includes other media organisations.

After

1. Do not talk about your submission to others

If you have any issues talk to WikiLeaks. We are the global experts in source protection – it is a complex field. Even those who mean well often do not have the experience or expertise to advise properly. This includes other media organisations.

2. Act normal

If you are a high-risk source, avoid saying anything or doing anything after submitting which might promote suspicion. In particular, you should try to stick to your normal routine and behaviour.

3. Remove traces of your submission

If you are a high-risk source and the computer you prepared your submission on, or uploaded it from, could subsequently be audited in an investigation, we recommend that you format and dispose of the computer hard drive and any other storage media you used.

In particular, hard drives retain data after formatting which may be visible to a digital forensics team and flash media (USB sticks, memory cards and SSD drives) retain data even after a secure erasure. If you used flash media to store sensitive data, it is important to destroy the media.

If you do this and are a high-risk source you should make sure there are no traces of the clean-up, since such traces themselves may draw suspicion.

4. If you face legal action

If a legal action is brought against you as a result of your submission, there are organisations that may help you. The Courage Foundation is an international organisation dedicated to the protection of journalistic sources. You can find more details at https://www.couragefound.org.

WikiLeaks publishes documents of political or historical importance that are censored or otherwise suppressed. We specialise in strategic global publishing and large archives.

The following is the address of our secure site where you can anonymously upload your documents to WikiLeaks editors. You can only access this submissions system through Tor. (See our Tor tab for more information.) We also advise you to read our tips for sources before submitting.

wlupld3ptjvsgwqw.onion
Copy this address into your Tor browser. Advanced users, if they wish, can also add a further layer of encryption to their submission using our public PGP key.

If you cannot use Tor, or your submission is very large, or you have specific requirements, WikiLeaks provides several alternative methods. Contact us to discuss how to proceed.

Vault 8

Source code and analysis for CIA software projects including those described in the Vault7 series.

This publication will enable investigative journalists, forensic experts and the general public to better identify and understand covert CIA infrastructure components.

Source code published in this series contains software designed to run on servers controlled by the CIA. Like WikiLeaks' earlier Vault7 series, the material published by WikiLeaks does not contain 0-days or similar security vulnerabilities which could be repurposed by others.

/*
 *  Elliptic curves over GF(p): curve-specific data and functions
 *
 *  Copyright (C) 2006-2013, Brainspark B.V.
 *
 *  This file is part of PolarSSL (http://www.polarssl.org)
 *  Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
 *
 *  All rights reserved.
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with this program; if not, write to the Free Software Foundation, Inc.,
 *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */
 
#include "polarssl/config.h"
 
#if defined(POLARSSL_ECP_C)
 
#include "polarssl/ecp.h"
 
#if defined(_MSC_VER) && !defined(inline)
#define inline _inline
#else
#if defined(__ARMCC_VERSION) && !defined(inline)
#define inline __inline
#endif /* __ARMCC_VERSION */
#endif /*_MSC_VER */
 
/*
 * Conversion macros for embedded constants:
 * build lists of t_uint's from lists of unsigned char's grouped by 8, 4 or 2
 */
#if defined(POLARSSL_HAVE_INT8)
 
#define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
    a, b, c, d, e, f, g, h
 
#define BYTES_TO_T_UINT_4( a, b, c, d )             \
    a, b, c, d
 
#define BYTES_TO_T_UINT_2( a, b )                   \
    a, b
 
#elif defined(POLARSSL_HAVE_INT16)
 
#define BYTES_TO_T_UINT_2( a, b )                   \
    ( (t_uint) a << 0 ) |                           \
    ( (t_uint) b << 8 )
 
#define BYTES_TO_T_UINT_4( a, b, c, d )             \
    BYTES_TO_T_UINT_2( a, b ),                      \
    BYTES_TO_T_UINT_2( c, d )
 
#define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
    BYTES_TO_T_UINT_2( a, b ),                      \
    BYTES_TO_T_UINT_2( c, d ),                      \
    BYTES_TO_T_UINT_2( e, f ),                      \
    BYTES_TO_T_UINT_2( g, h )
 
#elif defined(POLARSSL_HAVE_INT32)
 
#define BYTES_TO_T_UINT_4( a, b, c, d )             \
    ( (t_uint) a <<  0 ) |                          \
    ( (t_uint) b <<  8 ) |                          \
    ( (t_uint) c << 16 ) |                          \
    ( (t_uint) d << 24 )
 
#define BYTES_TO_T_UINT_2( a, b )                   \
    BYTES_TO_T_UINT_4( a, b, 0, 0 )
 
#define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
    BYTES_TO_T_UINT_4( a, b, c, d ),                \
    BYTES_TO_T_UINT_4( e, f, g, h )
 
#else /* 64-bits */
 
#define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
    ( (t_uint) a <<  0 ) |                          \
    ( (t_uint) b <<  8 ) |                          \
    ( (t_uint) c << 16 ) |                          \
    ( (t_uint) d << 24 ) |                          \
    ( (t_uint) e << 32 ) |                          \
    ( (t_uint) f << 40 ) |                          \
    ( (t_uint) g << 48 ) |                          \
    ( (t_uint) h << 56 )
 
#define BYTES_TO_T_UINT_4( a, b, c, d )             \
    BYTES_TO_T_UINT_8( a, b, c, d, 0, 0, 0, 0 )
 
#define BYTES_TO_T_UINT_2( a, b )                   \
    BYTES_TO_T_UINT_8( a, b, 0, 0, 0, 0, 0, 0 )
 
#endif /* bits in t_uint */
 
/*
 * Note: the constants are in little-endian order
 * to be directly usable in MPIs
 */
 
/*
 * Domain parameters for secp192r1
 */
#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
static t_uint secp192r1_p[] = {
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
};
static t_uint secp192r1_b[] = {
    BYTES_TO_T_UINT_8( 0xB1, 0xB9, 0x46, 0xC1, 0xEC, 0xDE, 0xB8, 0xFE ),
    BYTES_TO_T_UINT_8( 0x49, 0x30, 0x24, 0x72, 0xAB, 0xE9, 0xA7, 0x0F ),
    BYTES_TO_T_UINT_8( 0xE7, 0x80, 0x9C, 0xE5, 0x19, 0x05, 0x21, 0x64 ),
};
static t_uint secp192r1_gx[] = {
    BYTES_TO_T_UINT_8( 0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4 ),
    BYTES_TO_T_UINT_8( 0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C ),
    BYTES_TO_T_UINT_8( 0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18 ),
};
static t_uint secp192r1_gy[] = {
    BYTES_TO_T_UINT_8( 0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73 ),
    BYTES_TO_T_UINT_8( 0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63 ),
    BYTES_TO_T_UINT_8( 0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07 ),
};
static t_uint secp192r1_n[] = {
    BYTES_TO_T_UINT_8( 0x31, 0x28, 0xD2, 0xB4, 0xB1, 0xC9, 0x6B, 0x14 ),
    BYTES_TO_T_UINT_8( 0x36, 0xF8, 0xDE, 0x99, 0xFF, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
};
#endif /* POLARSSL_ECP_DP_SECP192R1_ENABLED */
 
/*
 * Domain parameters for secp224r1
 */
#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
static t_uint secp224r1_p[] = {
    BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
    BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
};
static t_uint secp224r1_b[] = {
    BYTES_TO_T_UINT_8( 0xB4, 0xFF, 0x55, 0x23, 0x43, 0x39, 0x0B, 0x27 ),
    BYTES_TO_T_UINT_8( 0xBA, 0xD8, 0xBF, 0xD7, 0xB7, 0xB0, 0x44, 0x50 ),
    BYTES_TO_T_UINT_8( 0x56, 0x32, 0x41, 0xF5, 0xAB, 0xB3, 0x04, 0x0C ),
    BYTES_TO_T_UINT_4( 0x85, 0x0A, 0x05, 0xB4 ),
};
static t_uint secp224r1_gx[] = {
    BYTES_TO_T_UINT_8( 0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34 ),
    BYTES_TO_T_UINT_8( 0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A ),
    BYTES_TO_T_UINT_8( 0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B ),
    BYTES_TO_T_UINT_4( 0xBD, 0x0C, 0x0E, 0xB7 ),
};
static t_uint secp224r1_gy[] = {
    BYTES_TO_T_UINT_8( 0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44 ),
    BYTES_TO_T_UINT_8( 0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD ),
    BYTES_TO_T_UINT_8( 0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5 ),
    BYTES_TO_T_UINT_4( 0x88, 0x63, 0x37, 0xBD ),
};
static t_uint secp224r1_n[] = {
    BYTES_TO_T_UINT_8( 0x3D, 0x2A, 0x5C, 0x5C, 0x45, 0x29, 0xDD, 0x13 ),
    BYTES_TO_T_UINT_8( 0x3E, 0xF0, 0xB8, 0xE0, 0xA2, 0x16, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
};
#endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED */
 
/*
 * Domain parameters for secp256r1
 */
#if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
static t_uint secp256r1_p[] = {
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
    BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
    BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
};
static t_uint secp256r1_b[] = {
    BYTES_TO_T_UINT_8( 0x4B, 0x60, 0xD2, 0x27, 0x3E, 0x3C, 0xCE, 0x3B ),
    BYTES_TO_T_UINT_8( 0xF6, 0xB0, 0x53, 0xCC, 0xB0, 0x06, 0x1D, 0x65 ),
    BYTES_TO_T_UINT_8( 0xBC, 0x86, 0x98, 0x76, 0x55, 0xBD, 0xEB, 0xB3 ),
    BYTES_TO_T_UINT_8( 0xE7, 0x93, 0x3A, 0xAA, 0xD8, 0x35, 0xC6, 0x5A ),
};
static t_uint secp256r1_gx[] = {
    BYTES_TO_T_UINT_8( 0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4 ),
    BYTES_TO_T_UINT_8( 0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77 ),
    BYTES_TO_T_UINT_8( 0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8 ),
    BYTES_TO_T_UINT_8( 0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B ),
};
static t_uint secp256r1_gy[] = {
    BYTES_TO_T_UINT_8( 0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB ),
    BYTES_TO_T_UINT_8( 0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B ),
    BYTES_TO_T_UINT_8( 0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E ),
    BYTES_TO_T_UINT_8( 0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F ),
};
static t_uint secp256r1_n[] = {
    BYTES_TO_T_UINT_8( 0x51, 0x25, 0x63, 0xFC, 0xC2, 0xCA, 0xB9, 0xF3 ),
    BYTES_TO_T_UINT_8( 0x84, 0x9E, 0x17, 0xA7, 0xAD, 0xFA, 0xE6, 0xBC ),
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
};
#endif /* POLARSSL_ECP_DP_SECP256R1_ENABLED */
 
/*
 * Domain parameters for secp384r1
 */
#if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
static t_uint secp384r1_p[] = {
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
    BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
};
static t_uint secp384r1_b[] = {
    BYTES_TO_T_UINT_8( 0xEF, 0x2A, 0xEC, 0xD3, 0xED, 0xC8, 0x85, 0x2A ),
    BYTES_TO_T_UINT_8( 0x9D, 0xD1, 0x2E, 0x8A, 0x8D, 0x39, 0x56, 0xC6 ),
    BYTES_TO_T_UINT_8( 0x5A, 0x87, 0x13, 0x50, 0x8F, 0x08, 0x14, 0x03 ),
    BYTES_TO_T_UINT_8( 0x12, 0x41, 0x81, 0xFE, 0x6E, 0x9C, 0x1D, 0x18 ),
    BYTES_TO_T_UINT_8( 0x19, 0x2D, 0xF8, 0xE3, 0x6B, 0x05, 0x8E, 0x98 ),
    BYTES_TO_T_UINT_8( 0xE4, 0xE7, 0x3E, 0xE2, 0xA7, 0x2F, 0x31, 0xB3 ),
};
static t_uint secp384r1_gx[] = {
    BYTES_TO_T_UINT_8( 0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A ),
    BYTES_TO_T_UINT_8( 0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55 ),
    BYTES_TO_T_UINT_8( 0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59 ),
    BYTES_TO_T_UINT_8( 0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E ),
    BYTES_TO_T_UINT_8( 0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E ),
    BYTES_TO_T_UINT_8( 0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA ),
};
static t_uint secp384r1_gy[] = {
    BYTES_TO_T_UINT_8( 0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A ),
    BYTES_TO_T_UINT_8( 0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A ),
    BYTES_TO_T_UINT_8( 0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9 ),
    BYTES_TO_T_UINT_8( 0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8 ),
    BYTES_TO_T_UINT_8( 0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D ),
    BYTES_TO_T_UINT_8( 0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36 ),
};
static t_uint secp384r1_n[] = {
    BYTES_TO_T_UINT_8( 0x73, 0x29, 0xC5, 0xCC, 0x6A, 0x19, 0xEC, 0xEC ),
    BYTES_TO_T_UINT_8( 0x7A, 0xA7, 0xB0, 0x48, 0xB2, 0x0D, 0x1A, 0x58 ),
    BYTES_TO_T_UINT_8( 0xDF, 0x2D, 0x37, 0xF4, 0x81, 0x4D, 0x63, 0xC7 ),
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
};
#endif /* POLARSSL_ECP_DP_SECP384R1_ENABLED */
 
/*
 * Domain parameters for secp521r1
 */
#if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
static t_uint secp521r1_p[] = {
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
};
static t_uint secp521r1_b[] = {
    BYTES_TO_T_UINT_8( 0x00, 0x3F, 0x50, 0x6B, 0xD4, 0x1F, 0x45, 0xEF ),
    BYTES_TO_T_UINT_8( 0xF1, 0x34, 0x2C, 0x3D, 0x88, 0xDF, 0x73, 0x35 ),
    BYTES_TO_T_UINT_8( 0x07, 0xBF, 0xB1, 0x3B, 0xBD, 0xC0, 0x52, 0x16 ),
    BYTES_TO_T_UINT_8( 0x7B, 0x93, 0x7E, 0xEC, 0x51, 0x39, 0x19, 0x56 ),
    BYTES_TO_T_UINT_8( 0xE1, 0x09, 0xF1, 0x8E, 0x91, 0x89, 0xB4, 0xB8 ),
    BYTES_TO_T_UINT_8( 0xF3, 0x15, 0xB3, 0x99, 0x5B, 0x72, 0xDA, 0xA2 ),
    BYTES_TO_T_UINT_8( 0xEE, 0x40, 0x85, 0xB6, 0xA0, 0x21, 0x9A, 0x92 ),
    BYTES_TO_T_UINT_8( 0x1F, 0x9A, 0x1C, 0x8E, 0x61, 0xB9, 0x3E, 0x95 ),
    BYTES_TO_T_UINT_2( 0x51, 0x00 ),
};
static t_uint secp521r1_gx[] = {
    BYTES_TO_T_UINT_8( 0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9 ),
    BYTES_TO_T_UINT_8( 0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33 ),
    BYTES_TO_T_UINT_8( 0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE ),
    BYTES_TO_T_UINT_8( 0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1 ),
    BYTES_TO_T_UINT_8( 0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8 ),
    BYTES_TO_T_UINT_8( 0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C ),
    BYTES_TO_T_UINT_8( 0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E ),
    BYTES_TO_T_UINT_8( 0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85 ),
    BYTES_TO_T_UINT_2( 0xC6, 0x00 ),
};
static t_uint secp521r1_gy[] = {
    BYTES_TO_T_UINT_8( 0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88 ),
    BYTES_TO_T_UINT_8( 0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35 ),
    BYTES_TO_T_UINT_8( 0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5 ),
    BYTES_TO_T_UINT_8( 0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97 ),
    BYTES_TO_T_UINT_8( 0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17 ),
    BYTES_TO_T_UINT_8( 0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98 ),
    BYTES_TO_T_UINT_8( 0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C ),
    BYTES_TO_T_UINT_8( 0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39 ),
    BYTES_TO_T_UINT_2( 0x18, 0x01 ),
};
static t_uint secp521r1_n[] = {
    BYTES_TO_T_UINT_8( 0x09, 0x64, 0x38, 0x91, 0x1E, 0xB7, 0x6F, 0xBB ),
    BYTES_TO_T_UINT_8( 0xAE, 0x47, 0x9C, 0x89, 0xB8, 0xC9, 0xB5, 0x3B ),
    BYTES_TO_T_UINT_8( 0xD0, 0xA5, 0x09, 0xF7, 0x48, 0x01, 0xCC, 0x7F ),
    BYTES_TO_T_UINT_8( 0x6B, 0x96, 0x2F, 0xBF, 0x83, 0x87, 0x86, 0x51 ),
    BYTES_TO_T_UINT_8( 0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
};
#endif /* POLARSSL_ECP_DP_SECP521R1_ENABLED */
 
#if defined(POLARSSL_ECP_DP_SECP192K1_ENABLED)
static t_uint secp192k1_p[] = {
    BYTES_TO_T_UINT_8( 0x37, 0xEE, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
};
static t_uint secp192k1_a[] = {
    BYTES_TO_T_UINT_2( 0x00, 0x00 ),
};
static t_uint secp192k1_b[] = {
    BYTES_TO_T_UINT_2( 0x03, 0x00 ),
};
static t_uint secp192k1_gx[] = {
    BYTES_TO_T_UINT_8( 0x7D, 0x6C, 0xE0, 0xEA, 0xB1, 0xD1, 0xA5, 0x1D ),
    BYTES_TO_T_UINT_8( 0x34, 0xF4, 0xB7, 0x80, 0x02, 0x7D, 0xB0, 0x26 ),
    BYTES_TO_T_UINT_8( 0xAE, 0xE9, 0x57, 0xC0, 0x0E, 0xF1, 0x4F, 0xDB ),
};
static t_uint secp192k1_gy[] = {
    BYTES_TO_T_UINT_8( 0x9D, 0x2F, 0x5E, 0xD9, 0x88, 0xAA, 0x82, 0x40 ),
    BYTES_TO_T_UINT_8( 0x34, 0x86, 0xBE, 0x15, 0xD0, 0x63, 0x41, 0x84 ),
    BYTES_TO_T_UINT_8( 0xA7, 0x28, 0x56, 0x9C, 0x6D, 0x2F, 0x2F, 0x9B ),
};
static t_uint secp192k1_n[] = {
    BYTES_TO_T_UINT_8( 0x8D, 0xFD, 0xDE, 0x74, 0x6A, 0x46, 0x69, 0x0F ),
    BYTES_TO_T_UINT_8( 0x17, 0xFC, 0xF2, 0x26, 0xFE, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
};
#endif /* POLARSSL_ECP_DP_SECP192K1_ENABLED */
 
#if defined(POLARSSL_ECP_DP_SECP224K1_ENABLED)
static t_uint secp224k1_p[] = {
    BYTES_TO_T_UINT_8( 0x6D, 0xE5, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
};
static t_uint secp224k1_a[] = {
    BYTES_TO_T_UINT_2( 0x00, 0x00 ),
};
static t_uint secp224k1_b[] = {
    BYTES_TO_T_UINT_2( 0x05, 0x00 ),
};
static t_uint secp224k1_gx[] = {
    BYTES_TO_T_UINT_8( 0x5C, 0xA4, 0xB7, 0xB6, 0x0E, 0x65, 0x7E, 0x0F ),
    BYTES_TO_T_UINT_8( 0xA9, 0x75, 0x70, 0xE4, 0xE9, 0x67, 0xA4, 0x69 ),
    BYTES_TO_T_UINT_8( 0xA1, 0x28, 0xFC, 0x30, 0xDF, 0x99, 0xF0, 0x4D ),
    BYTES_TO_T_UINT_4( 0x33, 0x5B, 0x45, 0xA1 ),
};
static t_uint secp224k1_gy[] = {
    BYTES_TO_T_UINT_8( 0xA5, 0x61, 0x6D, 0x55, 0xDB, 0x4B, 0xCA, 0xE2 ),
    BYTES_TO_T_UINT_8( 0x59, 0xBD, 0xB0, 0xC0, 0xF7, 0x19, 0xE3, 0xF7 ),
    BYTES_TO_T_UINT_8( 0xD6, 0xFB, 0xCA, 0x82, 0x42, 0x34, 0xBA, 0x7F ),
    BYTES_TO_T_UINT_4( 0xED, 0x9F, 0x08, 0x7E ),
};
static t_uint secp224k1_n[] = {
    BYTES_TO_T_UINT_8( 0xF7, 0xB1, 0x9F, 0x76, 0x71, 0xA9, 0xF0, 0xCA ),
    BYTES_TO_T_UINT_8( 0x84, 0x61, 0xEC, 0xD2, 0xE8, 0xDC, 0x01, 0x00 ),
    BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
    BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ),
};
#endif /* POLARSSL_ECP_DP_SECP224K1_ENABLED */
 
#if defined(POLARSSL_ECP_DP_SECP256K1_ENABLED)
static t_uint secp256k1_p[] = {
    BYTES_TO_T_UINT_8( 0x2F, 0xFC, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
};
static t_uint secp256k1_a[] = {
    BYTES_TO_T_UINT_2( 0x00, 0x00 ),
};
static t_uint secp256k1_b[] = {
    BYTES_TO_T_UINT_2( 0x07, 0x00 ),
};
static t_uint secp256k1_gx[] = {
    BYTES_TO_T_UINT_8( 0x98, 0x17, 0xF8, 0x16, 0x5B, 0x81, 0xF2, 0x59 ),
    BYTES_TO_T_UINT_8( 0xD9, 0x28, 0xCE, 0x2D, 0xDB, 0xFC, 0x9B, 0x02 ),
    BYTES_TO_T_UINT_8( 0x07, 0x0B, 0x87, 0xCE, 0x95, 0x62, 0xA0, 0x55 ),
    BYTES_TO_T_UINT_8( 0xAC, 0xBB, 0xDC, 0xF9, 0x7E, 0x66, 0xBE, 0x79 ),
};
static t_uint secp256k1_gy[] = {
    BYTES_TO_T_UINT_8( 0xB8, 0xD4, 0x10, 0xFB, 0x8F, 0xD0, 0x47, 0x9C ),
    BYTES_TO_T_UINT_8( 0x19, 0x54, 0x85, 0xA6, 0x48, 0xB4, 0x17, 0xFD ),
    BYTES_TO_T_UINT_8( 0xA8, 0x08, 0x11, 0x0E, 0xFC, 0xFB, 0xA4, 0x5D ),
    BYTES_TO_T_UINT_8( 0x65, 0xC4, 0xA3, 0x26, 0x77, 0xDA, 0x3A, 0x48 ),
};
static t_uint secp256k1_n[] = {
    BYTES_TO_T_UINT_8( 0x41, 0x41, 0x36, 0xD0, 0x8C, 0x5E, 0xD2, 0xBF ),
    BYTES_TO_T_UINT_8( 0x3B, 0xA0, 0x48, 0xAF, 0xE6, 0xDC, 0xAE, 0xBA ),
    BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
    BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
};
#endif /* POLARSSL_ECP_DP_SECP256K1_ENABLED */
 
/*
 * Domain parameters for brainpoolP256r1 (RFC 5639 3.4)
 */
#if defined(POLARSSL_ECP_DP_BP256R1_ENABLED)
static t_uint brainpoolP256r1_p[] = {
    BYTES_TO_T_UINT_8( 0x77, 0x53, 0x6E, 0x1F, 0x1D, 0x48, 0x13, 0x20 ),
    BYTES_TO_T_UINT_8( 0x28, 0x20, 0x26, 0xD5, 0x23, 0xF6, 0x3B, 0x6E ),
    BYTES_TO_T_UINT_8( 0x72, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
    BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
};
static t_uint brainpoolP256r1_a[] = {
    BYTES_TO_T_UINT_8( 0xD9, 0xB5, 0x30, 0xF3, 0x44, 0x4B, 0x4A, 0xE9 ),
    BYTES_TO_T_UINT_8( 0x6C, 0x5C, 0xDC, 0x26, 0xC1, 0x55, 0x80, 0xFB ),
    BYTES_TO_T_UINT_8( 0xE7, 0xFF, 0x7A, 0x41, 0x30, 0x75, 0xF6, 0xEE ),
    BYTES_TO_T_UINT_8( 0x57, 0x30, 0x2C, 0xFC, 0x75, 0x09, 0x5A, 0x7D ),
};
static t_uint brainpoolP256r1_b[] = {
    BYTES_TO_T_UINT_8( 0xB6, 0x07, 0x8C, 0xFF, 0x18, 0xDC, 0xCC, 0x6B ),
    BYTES_TO_T_UINT_8( 0xCE, 0xE1, 0xF7, 0x5C, 0x29, 0x16, 0x84, 0x95 ),
    BYTES_TO_T_UINT_8( 0xBF, 0x7C, 0xD7, 0xBB, 0xD9, 0xB5, 0x30, 0xF3 ),
    BYTES_TO_T_UINT_8( 0x44, 0x4B, 0x4A, 0xE9, 0x6C, 0x5C, 0xDC, 0x26 ),
};
static t_uint brainpoolP256r1_gx[] = {
    BYTES_TO_T_UINT_8( 0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A ),
    BYTES_TO_T_UINT_8( 0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9 ),
    BYTES_TO_T_UINT_8( 0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C ),
    BYTES_TO_T_UINT_8( 0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B ),
};
static t_uint brainpoolP256r1_gy[] = {
    BYTES_TO_T_UINT_8( 0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C ),
    BYTES_TO_T_UINT_8( 0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2 ),
    BYTES_TO_T_UINT_8( 0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97 ),
    BYTES_TO_T_UINT_8( 0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54 ),
};
static t_uint brainpoolP256r1_n[] = {
    BYTES_TO_T_UINT_8( 0xA7, 0x56, 0x48, 0x97, 0x82, 0x0E, 0x1E, 0x90 ),
    BYTES_TO_T_UINT_8( 0xF7, 0xA6, 0x61, 0xB5, 0xA3, 0x7A, 0x39, 0x8C ),
    BYTES_TO_T_UINT_8( 0x71, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
    BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
};
#endif /* POLARSSL_ECP_DP_BP256R1_ENABLED */
 
/*
 * Domain parameters for brainpoolP384r1 (RFC 5639 3.6)
 */
#if defined(POLARSSL_ECP_DP_BP384R1_ENABLED)
static t_uint brainpoolP384r1_p[] = {
    BYTES_TO_T_UINT_8( 0x53, 0xEC, 0x07, 0x31, 0x13, 0x00, 0x47, 0x87 ),
    BYTES_TO_T_UINT_8( 0x71, 0x1A, 0x1D, 0x90, 0x29, 0xA7, 0xD3, 0xAC ),
    BYTES_TO_T_UINT_8( 0x23, 0x11, 0xB7, 0x7F, 0x19, 0xDA, 0xB1, 0x12 ),
    BYTES_TO_T_UINT_8( 0xB4, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
    BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
    BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
};
static t_uint brainpoolP384r1_a[] = {
    BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
    BYTES_TO_T_UINT_8( 0xEB, 0xD4, 0x3A, 0x50, 0x4A, 0x81, 0xA5, 0x8A ),
    BYTES_TO_T_UINT_8( 0x0F, 0xF9, 0x91, 0xBA, 0xEF, 0x65, 0x91, 0x13 ),
    BYTES_TO_T_UINT_8( 0x87, 0x27, 0xB2, 0x4F, 0x8E, 0xA2, 0xBE, 0xC2 ),
    BYTES_TO_T_UINT_8( 0xA0, 0xAF, 0x05, 0xCE, 0x0A, 0x08, 0x72, 0x3C ),
    BYTES_TO_T_UINT_8( 0x0C, 0x15, 0x8C, 0x3D, 0xC6, 0x82, 0xC3, 0x7B ),
};
static t_uint brainpoolP384r1_b[] = {
    BYTES_TO_T_UINT_8( 0x11, 0x4C, 0x50, 0xFA, 0x96, 0x86, 0xB7, 0x3A ),
    BYTES_TO_T_UINT_8( 0x94, 0xC9, 0xDB, 0x95, 0x02, 0x39, 0xB4, 0x7C ),
    BYTES_TO_T_UINT_8( 0xD5, 0x62, 0xEB, 0x3E, 0xA5, 0x0E, 0x88, 0x2E ),
    BYTES_TO_T_UINT_8( 0xA6, 0xD2, 0xDC, 0x07, 0xE1, 0x7D, 0xB7, 0x2F ),
    BYTES_TO_T_UINT_8( 0x7C, 0x44, 0xF0, 0x16, 0x54, 0xB5, 0x39, 0x8B ),
    BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
};
static t_uint brainpoolP384r1_gx[] = {
    BYTES_TO_T_UINT_8( 0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF ),
    BYTES_TO_T_UINT_8( 0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8 ),
    BYTES_TO_T_UINT_8( 0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB ),
    BYTES_TO_T_UINT_8( 0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88 ),
    BYTES_TO_T_UINT_8( 0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2 ),
    BYTES_TO_T_UINT_8( 0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D ),
};
static t_uint brainpoolP384r1_gy[] = {
    BYTES_TO_T_UINT_8( 0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42 ),
    BYTES_TO_T_UINT_8( 0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E ),
    BYTES_TO_T_UINT_8( 0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1 ),
    BYTES_TO_T_UINT_8( 0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62 ),
    BYTES_TO_T_UINT_8( 0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C ),
    BYTES_TO_T_UINT_8( 0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A ),
};
static t_uint brainpoolP384r1_n[] = {
    BYTES_TO_T_UINT_8( 0x65, 0x65, 0x04, 0xE9, 0x02, 0x32, 0x88, 0x3B ),
    BYTES_TO_T_UINT_8( 0x10, 0xC3, 0x7F, 0x6B, 0xAF, 0xB6, 0x3A, 0xCF ),
    BYTES_TO_T_UINT_8( 0xA7, 0x25, 0x04, 0xAC, 0x6C, 0x6E, 0x16, 0x1F ),
    BYTES_TO_T_UINT_8( 0xB3, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
    BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
    BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
};
#endif /* POLARSSL_ECP_DP_BP384R1_ENABLED */
 
/*
 * Domain parameters for brainpoolP512r1 (RFC 5639 3.7)
 */
#if defined(POLARSSL_ECP_DP_BP512R1_ENABLED)
static t_uint brainpoolP512r1_p[] = {
    BYTES_TO_T_UINT_8( 0xF3, 0x48, 0x3A, 0x58, 0x56, 0x60, 0xAA, 0x28 ),
    BYTES_TO_T_UINT_8( 0x85, 0xC6, 0x82, 0x2D, 0x2F, 0xFF, 0x81, 0x28 ),
    BYTES_TO_T_UINT_8( 0xE6, 0x80, 0xA3, 0xE6, 0x2A, 0xA1, 0xCD, 0xAE ),
    BYTES_TO_T_UINT_8( 0x42, 0x68, 0xC6, 0x9B, 0x00, 0x9B, 0x4D, 0x7D ),
    BYTES_TO_T_UINT_8( 0x71, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
    BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
    BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
    BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
};
static t_uint brainpoolP512r1_a[] = {
    BYTES_TO_T_UINT_8( 0xCA, 0x94, 0xFC, 0x77, 0x4D, 0xAC, 0xC1, 0xE7 ),
    BYTES_TO_T_UINT_8( 0xB9, 0xC7, 0xF2, 0x2B, 0xA7, 0x17, 0x11, 0x7F ),
    BYTES_TO_T_UINT_8( 0xB5, 0xC8, 0x9A, 0x8B, 0xC9, 0xF1, 0x2E, 0x0A ),
    BYTES_TO_T_UINT_8( 0xA1, 0x3A, 0x25, 0xA8, 0x5A, 0x5D, 0xED, 0x2D ),
    BYTES_TO_T_UINT_8( 0xBC, 0x63, 0x98, 0xEA, 0xCA, 0x41, 0x34, 0xA8 ),
    BYTES_TO_T_UINT_8( 0x10, 0x16, 0xF9, 0x3D, 0x8D, 0xDD, 0xCB, 0x94 ),
    BYTES_TO_T_UINT_8( 0xC5, 0x4C, 0x23, 0xAC, 0x45, 0x71, 0x32, 0xE2 ),
    BYTES_TO_T_UINT_8( 0x89, 0x3B, 0x60, 0x8B, 0x31, 0xA3, 0x30, 0x78 ),
};
static t_uint brainpoolP512r1_b[] = {
    BYTES_TO_T_UINT_8( 0x23, 0xF7, 0x16, 0x80, 0x63, 0xBD, 0x09, 0x28 ),
    BYTES_TO_T_UINT_8( 0xDD, 0xE5, 0xBA, 0x5E, 0xB7, 0x50, 0x40, 0x98 ),
    BYTES_TO_T_UINT_8( 0x67, 0x3E, 0x08, 0xDC, 0xCA, 0x94, 0xFC, 0x77 ),
    BYTES_TO_T_UINT_8( 0x4D, 0xAC, 0xC1, 0xE7, 0xB9, 0xC7, 0xF2, 0x2B ),
    BYTES_TO_T_UINT_8( 0xA7, 0x17, 0x11, 0x7F, 0xB5, 0xC8, 0x9A, 0x8B ),
    BYTES_TO_T_UINT_8( 0xC9, 0xF1, 0x2E, 0x0A, 0xA1, 0x3A, 0x25, 0xA8 ),
    BYTES_TO_T_UINT_8( 0x5A, 0x5D, 0xED, 0x2D, 0xBC, 0x63, 0x98, 0xEA ),
    BYTES_TO_T_UINT_8( 0xCA, 0x41, 0x34, 0xA8, 0x10, 0x16, 0xF9, 0x3D ),
};
static t_uint brainpoolP512r1_gx[] = {
    BYTES_TO_T_UINT_8( 0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B ),
    BYTES_TO_T_UINT_8( 0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C ),
    BYTES_TO_T_UINT_8( 0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50 ),
    BYTES_TO_T_UINT_8( 0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF ),
    BYTES_TO_T_UINT_8( 0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4 ),
    BYTES_TO_T_UINT_8( 0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85 ),
    BYTES_TO_T_UINT_8( 0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A ),
    BYTES_TO_T_UINT_8( 0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81 ),
};
static t_uint brainpoolP512r1_gy[] = {
    BYTES_TO_T_UINT_8( 0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78 ),
    BYTES_TO_T_UINT_8( 0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1 ),
    BYTES_TO_T_UINT_8( 0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B ),
    BYTES_TO_T_UINT_8( 0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2 ),
    BYTES_TO_T_UINT_8( 0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0 ),
    BYTES_TO_T_UINT_8( 0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2 ),
    BYTES_TO_T_UINT_8( 0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0 ),
    BYTES_TO_T_UINT_8( 0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D ),
};
static t_uint brainpoolP512r1_n[] = {
    BYTES_TO_T_UINT_8( 0x69, 0x00, 0xA9, 0x9C, 0x82, 0x96, 0x87, 0xB5 ),
    BYTES_TO_T_UINT_8( 0xDD, 0xDA, 0x5D, 0x08, 0x81, 0xD3, 0xB1, 0x1D ),
    BYTES_TO_T_UINT_8( 0x47, 0x10, 0xAC, 0x7F, 0x19, 0x61, 0x86, 0x41 ),
    BYTES_TO_T_UINT_8( 0x19, 0x26, 0xA9, 0x4C, 0x41, 0x5C, 0x3E, 0x55 ),
    BYTES_TO_T_UINT_8( 0x70, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
    BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
    BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
    BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
};
#endif /* POLARSSL_ECP_DP_BP512R1_ENABLED */
 
/*
 * Create an MPI from embedded constants
 * (assumes len is an exact multiple of sizeof t_uint)
 */
static inline void ecp_mpi_load( mpi *X, const t_uint *p, size_t len )
{
    X->s = 1;
    X->n = len / sizeof( t_uint );
    X->p = (t_uint *) p;
}
 
/*
 * Set an MPI to static value 1
 */
static inline void ecp_mpi_set1( mpi *X )
{
    static t_uint one[] = { 1 };
    X->s = 1;
    X->n = 1;
    X->p = one;
}
 
/*
 * Make group available from embedded constants
 */
static int ecp_group_load( ecp_group *grp,
                           const t_uint *p,  size_t plen,
                           const t_uint *a,  size_t alen,
                           const t_uint *b,  size_t blen,
                           const t_uint *gx, size_t gxlen,
                           const t_uint *gy, size_t gylen,
                           const t_uint *n,  size_t nlen)
{
    ecp_mpi_load( &grp->P, p, plen );
    if( a != NULL )
        ecp_mpi_load( &grp->A, a, alen );
    ecp_mpi_load( &grp->B, b, blen );
    ecp_mpi_load( &grp->N, n, nlen );
 
    ecp_mpi_load( &grp->G.X, gx, gxlen );
    ecp_mpi_load( &grp->G.Y, gy, gylen );
    ecp_mpi_set1( &grp->G.Z );
 
    grp->pbits = mpi_msb( &grp->P );
    grp->nbits = mpi_msb( &grp->N );
 
    grp->h = 1;
 
    return( 0 );
}
 
#if defined(POLARSSL_ECP_NIST_OPTIM)
/* Forward declarations */
#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
static int ecp_mod_p192( mpi * );
#endif
#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
static int ecp_mod_p224( mpi * );
#endif
#if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
static int ecp_mod_p256( mpi * );
#endif
#if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
static int ecp_mod_p384( mpi * );
#endif
#if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
static int ecp_mod_p521( mpi * );
#endif
 
#define NIST_MODP( P )      grp->modp = ecp_mod_ ## P;
#else
#define NIST_MODP( P )
#endif /* POLARSSL_ECP_NIST_OPTIM */
 
/* Additional forward declarations */
#if defined(POLARSSL_ECP_DP_M255_ENABLED)
static int ecp_mod_p255( mpi * );
#endif
#if defined(POLARSSL_ECP_DP_SECP192K1_ENABLED)
static int ecp_mod_p192k1( mpi * );
#endif
#if defined(POLARSSL_ECP_DP_SECP224K1_ENABLED)
static int ecp_mod_p224k1( mpi * );
#endif
#if defined(POLARSSL_ECP_DP_SECP256K1_ENABLED)
static int ecp_mod_p256k1( mpi * );
#endif
 
#define LOAD_GROUP_A( G )   ecp_group_load( grp,            \
                            G ## _p,  sizeof( G ## _p  ),   \
                            G ## _a,  sizeof( G ## _a  ),   \
                            G ## _b,  sizeof( G ## _b  ),   \
                            G ## _gx, sizeof( G ## _gx ),   \
                            G ## _gy, sizeof( G ## _gy ),   \
                            G ## _n,  sizeof( G ## _n  ) )
 
#define LOAD_GROUP( G )     ecp_group_load( grp,            \
                            G ## _p,  sizeof( G ## _p  ),   \
                            NULL,     0,                    \
                            G ## _b,  sizeof( G ## _b  ),   \
                            G ## _gx, sizeof( G ## _gx ),   \
                            G ## _gy, sizeof( G ## _gy ),   \
                            G ## _n,  sizeof( G ## _n  ) )
 
#if defined(POLARSSL_ECP_DP_M255_ENABLED)
/*
 * Specialized function for creating the Curve25519 group
 */
static int ecp_use_curve25519( ecp_group *grp )
{
    int ret;
 
    /* Actually ( A + 2 ) / 4 */
    MPI_CHK( mpi_read_string( &grp->A, 16, "01DB42" ) );
 
    /* P = 2^255 - 19 */
    MPI_CHK( mpi_lset( &grp->P, 1 ) );
    MPI_CHK( mpi_shift_l( &grp->P, 255 ) );
    MPI_CHK( mpi_sub_int( &grp->P, &grp->P, 19 ) );
    grp->pbits = mpi_msb( &grp->P );
 
    /* Y intentionaly not set, since we use x/z coordinates.
     * This is used as a marker to identify Montgomery curves! */
    MPI_CHK( mpi_lset( &grp->G.X, 9 ) );
    MPI_CHK( mpi_lset( &grp->G.Z, 1 ) );
    mpi_free( &grp->G.Y );
 
    /* Actually, the required msb for private keys */
    grp->nbits = 254;
 
cleanup:
    if( ret != 0 )
        ecp_group_free( grp );
 
    return( ret );
}
#endif /* POLARSSL_ECP_DP_M255_ENABLED */
 
/*
 * Set a group using well-known domain parameters
 */
int ecp_use_known_dp( ecp_group *grp, ecp_group_id id )
{
    ecp_group_free( grp );
 
    grp->id = id;
 
    switch( id )
    {
#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
        case POLARSSL_ECP_DP_SECP192R1:
            NIST_MODP( p192 );
            return( LOAD_GROUP( secp192r1 ) );
#endif /* POLARSSL_ECP_DP_SECP192R1_ENABLED */
 
#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
        case POLARSSL_ECP_DP_SECP224R1:
            NIST_MODP( p224 );
            return( LOAD_GROUP( secp224r1 ) );
#endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED */
 
#if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
        case POLARSSL_ECP_DP_SECP256R1:
            NIST_MODP( p256 );
            return( LOAD_GROUP( secp256r1 ) );
#endif /* POLARSSL_ECP_DP_SECP256R1_ENABLED */
 
#if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
        case POLARSSL_ECP_DP_SECP384R1:
            NIST_MODP( p384 );
            return( LOAD_GROUP( secp384r1 ) );
#endif /* POLARSSL_ECP_DP_SECP384R1_ENABLED */
 
#if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
        case POLARSSL_ECP_DP_SECP521R1:
            NIST_MODP( p521 );
            return( LOAD_GROUP( secp521r1 ) );
#endif /* POLARSSL_ECP_DP_SECP521R1_ENABLED */
 
#if defined(POLARSSL_ECP_DP_SECP192K1_ENABLED)
        case POLARSSL_ECP_DP_SECP192K1:
            grp->modp = ecp_mod_p192k1;
            return( LOAD_GROUP_A( secp192k1 ) );
#endif /* POLARSSL_ECP_DP_SECP192K1_ENABLED */
 
#if defined(POLARSSL_ECP_DP_SECP224K1_ENABLED)
        case POLARSSL_ECP_DP_SECP224K1:
            grp->modp = ecp_mod_p224k1;
            return( LOAD_GROUP_A( secp224k1 ) );
#endif /* POLARSSL_ECP_DP_SECP224K1_ENABLED */
 
#if defined(POLARSSL_ECP_DP_SECP256K1_ENABLED)
        case POLARSSL_ECP_DP_SECP256K1:
            grp->modp = ecp_mod_p256k1;
            return( LOAD_GROUP_A( secp256k1 ) );
#endif /* POLARSSL_ECP_DP_SECP256K1_ENABLED */
 
#if defined(POLARSSL_ECP_DP_BP256R1_ENABLED)
        case POLARSSL_ECP_DP_BP256R1:
            return( LOAD_GROUP_A( brainpoolP256r1 ) );
#endif /* POLARSSL_ECP_DP_BP256R1_ENABLED */
 
#if defined(POLARSSL_ECP_DP_BP384R1_ENABLED)
        case POLARSSL_ECP_DP_BP384R1:
            return( LOAD_GROUP_A( brainpoolP384r1 ) );
#endif /* POLARSSL_ECP_DP_BP384R1_ENABLED */
 
#if defined(POLARSSL_ECP_DP_BP512R1_ENABLED)
        case POLARSSL_ECP_DP_BP512R1:
            return( LOAD_GROUP_A( brainpoolP512r1 ) );
#endif /* POLARSSL_ECP_DP_BP512R1_ENABLED */
 
#if defined(POLARSSL_ECP_DP_M255_ENABLED)
        case POLARSSL_ECP_DP_M255:
            grp->modp = ecp_mod_p255;
            return( ecp_use_curve25519( grp ) );
#endif /* POLARSSL_ECP_DP_M255_ENABLED */
 
        default:
            ecp_group_free( grp );
            return( POLARSSL_ERR_ECP_FEATURE_UNAVAILABLE );
    }
}
 
#if defined(POLARSSL_ECP_NIST_OPTIM)
/*
 * Fast reduction modulo the primes used by the NIST curves.
 *
 * These functions are critical for speed, but not needed for correct
 * operations. So, we make the choice to heavily rely on the internals of our
 * bignum library, which creates a tight coupling between these functions and
 * our MPI implementation.  However, the coupling between the ECP module and
 * MPI remains loose, since these functions can be deactivated at will.
 */
 
#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
/*
 * Compared to the way things are presented in FIPS 186-3 D.2,
 * we proceed in columns, from right (least significant chunk) to left,
 * adding chunks to N in place, and keeping a carry for the next chunk.
 * This avoids moving things around in memory, and uselessly adding zeros,
 * compared to the more straightforward, line-oriented approach.
 *
 * For this prime we need to handle data in chunks of 64 bits.
 * Since this is always a multiple of our basic t_uint, we can
 * use a t_uint * to designate such a chunk, and small loops to handle it.
 */
 
/* Add 64-bit chunks (dst += src) and update carry */
static inline void add64( t_uint *dst, t_uint *src, t_uint *carry )
{
    unsigned char i;
    t_uint c = 0;
    for( i = 0; i < 8 / sizeof( t_uint ); i++, dst++, src++ )
    {
        *dst += c;      c  = ( *dst < c );
        *dst += *src;   c += ( *dst < *src );
    }
    *carry += c;
}
 
/* Add carry to a 64-bit chunk and update carry */
static inline void carry64( t_uint *dst, t_uint *carry )
{
    unsigned char i;
    for( i = 0; i < 8 / sizeof( t_uint ); i++, dst++ )
    {
        *dst += *carry;
        *carry  = ( *dst < *carry );
    }
}
 
#define WIDTH       8 / sizeof( t_uint )
#define A( i )      N->p + i * WIDTH
#define ADD( i )    add64( p, A( i ), &c )
#define NEXT        p += WIDTH; carry64( p, &c )
#define LAST        p += WIDTH; *p = c; while( ++p < end ) *p = 0
 
/*
 * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
 */
static int ecp_mod_p192( mpi *N )
{
    int ret;
    t_uint c = 0;
    t_uint *p, *end;
 
    /* Make sure we have enough blocks so that A(5) is legal */
    MPI_CHK( mpi_grow( N, 6 * WIDTH ) );
 
    p = N->p;
    end = p + N->n;
 
    ADD( 3 ); ADD( 5 );             NEXT; // A0 += A3 + A5
    ADD( 3 ); ADD( 4 ); ADD( 5 );   NEXT; // A1 += A3 + A4 + A5
    ADD( 4 ); ADD( 5 );             LAST; // A2 += A4 + A5
 
cleanup:
    return( ret );
}
 
#undef WIDTH
#undef A
#undef ADD
#undef NEXT
#undef LAST
#endif /* POLARSSL_ECP_DP_SECP192R1_ENABLED */
 
#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED) ||   \
    defined(POLARSSL_ECP_DP_SECP256R1_ENABLED) ||   \
    defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
/*
 * The reader is advised to first understand ecp_mod_p192() since the same
 * general structure is used here, but with additional complications:
 * (1) chunks of 32 bits, and (2) subtractions.
 */
 
/*
 * For these primes, we need to handle data in chunks of 32 bits.
 * This makes it more complicated if we use 64 bits limbs in MPI,
 * which prevents us from using a uniform access method as for p192.
 *
 * So, we define a mini abstraction layer to access 32 bit chunks,
 * load them in 'cur' for work, and store them back from 'cur' when done.
 *
 * While at it, also define the size of N in terms of 32-bit chunks.
 */
#define LOAD32      cur = A( i );
 
#if defined(POLARSSL_HAVE_INT8)     /* 8 bit */
 
#define MAX32       N->n / 4
#define A( j )      (uint32_t)( N->p[4*j+0]       ) |  \
                              ( N->p[4*j+1] << 8  ) |  \
                              ( N->p[4*j+2] << 16 ) |  \
                              ( N->p[4*j+3] << 24 )
#define STORE32     N->p[4*i+0] = (t_uint)( cur       );   \
                    N->p[4*i+1] = (t_uint)( cur >> 8  );   \
                    N->p[4*i+2] = (t_uint)( cur >> 16 );   \
                    N->p[4*i+3] = (t_uint)( cur >> 24 );
 
#elif defined(POLARSSL_HAVE_INT16)  /* 16 bit */
 
#define MAX32       N->n / 2
#define A( j )      (uint32_t)( N->p[2*j] ) | ( N->p[2*j+1] << 16 )
#define STORE32     N->p[2*i+0] = (t_uint)( cur       );  \
                    N->p[2*i+1] = (t_uint)( cur >> 16 );
 
#elif defined(POLARSSL_HAVE_INT32)  /* 32 bit */
 
#define MAX32       N->n
#define A( j )      N->p[j]
#define STORE32     N->p[i] = cur;
 
#else                               /* 64-bit */
 
#define MAX32       N->n * 2
#define A( j ) j % 2 ? (uint32_t)( N->p[j/2] >> 32 ) : (uint32_t)( N->p[j/2] )
#define STORE32                                   \
    if( i % 2 ) {                                 \
        N->p[i/2] &= 0x00000000FFFFFFFF;          \
        N->p[i/2] |= ((t_uint) cur) << 32;        \
    } else {                                      \
        N->p[i/2] &= 0xFFFFFFFF00000000;          \
        N->p[i/2] |= (t_uint) cur;                \
    }
 
#endif /* sizeof( t_uint ) */
 
/*
 * Helpers for addition and subtraction of chunks, with signed carry.
 */
static inline void add32( uint32_t *dst, uint32_t src, signed char *carry )
{
    *dst += src;
    *carry += ( *dst < src );
}
 
static inline void sub32( uint32_t *dst, uint32_t src, signed char *carry )
{
    *carry -= ( *dst < src );
    *dst -= src;
}
 
#define ADD( j )    add32( &cur, A( j ), &c );
#define SUB( j )    sub32( &cur, A( j ), &c );
 
/*
 * Helpers for the main 'loop'
 * (see fix_negative for the motivation of C)
 */
#define INIT( b )                                           \
    int ret;                                                \
    signed char c = 0, cc;                                  \
    uint32_t cur;                                           \
    size_t i = 0, bits = b;                                 \
    mpi C;                                                  \
    t_uint Cp[ b / 8 / sizeof( t_uint) + 1 ];               \
                                                            \
    C.s = 1;                                                \
    C.n = b / 8 / sizeof( t_uint) + 1;                      \
    C.p = Cp;                                               \
    memset( Cp, 0, C.n * sizeof( t_uint ) );                \
                                                            \
    MPI_CHK( mpi_grow( N, b * 2 / 8 / sizeof( t_uint ) ) ); \
    LOAD32;
 
#define NEXT                    \
    STORE32; i++; LOAD32;       \
    cc = c; c = 0;              \
    if( cc < 0 )                \
        sub32( &cur, -cc, &c ); \
    else                        \
        add32( &cur, cc, &c );  \

#define LAST                                    \
    STORE32; i++;                               \
    cur = c > 0 ? c : 0; STORE32;               \
    cur = 0; while( ++i < MAX32 ) { STORE32; }  \
    if( c < 0 ) fix_negative( N, c, &C, bits );
 
/*
 * If the result is negative, we get it in the form
 * c * 2^(bits + 32) + N, with c negative and N positive shorter than 'bits'
 */
static inline int fix_negative( mpi *N, signed char c, mpi *C, size_t bits )
{
    int ret;
 
    /* C = - c * 2^(bits + 32) */
#if !defined(POLARSSL_HAVE_INT64)
    ((void) bits);
#else
    if( bits == 224 )
        C->p[ C->n - 1 ] = ((t_uint) -c) << 32;
    else
#endif
        C->p[ C->n - 1 ] = (t_uint) -c;
 
    /* N = - ( C - N ) */
    MPI_CHK( mpi_sub_abs( N, C, N ) );
    N->s = -1;
 
cleanup:
 
    return( ret );
}
 
#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
/*
 * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
 */
static int ecp_mod_p224( mpi *N )
{
    INIT( 224 );
 
    SUB(  7 ); SUB( 11 );               NEXT; // A0 += -A7 - A11
    SUB(  8 ); SUB( 12 );               NEXT; // A1 += -A8 - A12
    SUB(  9 ); SUB( 13 );               NEXT; // A2 += -A9 - A13
    SUB( 10 ); ADD(  7 ); ADD( 11 );    NEXT; // A3 += -A10 + A7 + A11
    SUB( 11 ); ADD(  8 ); ADD( 12 );    NEXT; // A4 += -A11 + A8 + A12
    SUB( 12 ); ADD(  9 ); ADD( 13 );    NEXT; // A5 += -A12 + A9 + A13
    SUB( 13 ); ADD( 10 );               LAST; // A6 += -A13 + A10
 
cleanup:
    return( ret );
}
#endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED */
 
#if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
/*
 * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
 */
static int ecp_mod_p256( mpi *N )
{
    INIT( 256 );
 
    ADD(  8 ); ADD(  9 );
    SUB( 11 ); SUB( 12 ); SUB( 13 ); SUB( 14 );             NEXT; // A0
 
    ADD(  9 ); ADD( 10 );
    SUB( 12 ); SUB( 13 ); SUB( 14 ); SUB( 15 );             NEXT; // A1
 
    ADD( 10 ); ADD( 11 );
    SUB( 13 ); SUB( 14 ); SUB( 15 );                        NEXT; // A2
 
    ADD( 11 ); ADD( 11 ); ADD( 12 ); ADD( 12 ); ADD( 13 );
    SUB( 15 ); SUB(  8 ); SUB(  9 );                        NEXT; // A3
 
    ADD( 12 ); ADD( 12 ); ADD( 13 ); ADD( 13 ); ADD( 14 );
    SUB(  9 ); SUB( 10 );                                   NEXT; // A4
 
    ADD( 13 ); ADD( 13 ); ADD( 14 ); ADD( 14 ); ADD( 15 );
    SUB( 10 ); SUB( 11 );                                   NEXT; // A5
 
    ADD( 14 ); ADD( 14 ); ADD( 15 ); ADD( 15 ); ADD( 14 ); ADD( 13 );
    SUB(  8 ); SUB(  9 );                                   NEXT; // A6
 
    ADD( 15 ); ADD( 15 ); ADD( 15 ); ADD( 8 );
    SUB( 10 ); SUB( 11 ); SUB( 12 ); SUB( 13 );             LAST; // A7
 
cleanup:
    return( ret );
}
#endif /* POLARSSL_ECP_DP_SECP256R1_ENABLED */
 
#if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
/*
 * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
 */
static int ecp_mod_p384( mpi *N )
{
    INIT( 384 );
 
    ADD( 12 ); ADD( 21 ); ADD( 20 );
    SUB( 23 );                                              NEXT; // A0
 
    ADD( 13 ); ADD( 22 ); ADD( 23 );
    SUB( 12 ); SUB( 20 );                                   NEXT; // A2
 
    ADD( 14 ); ADD( 23 );
    SUB( 13 ); SUB( 21 );                                   NEXT; // A2
 
    ADD( 15 ); ADD( 12 ); ADD( 20 ); ADD( 21 );
    SUB( 14 ); SUB( 22 ); SUB( 23 );                        NEXT; // A3
 
    ADD( 21 ); ADD( 21 ); ADD( 16 ); ADD( 13 ); ADD( 12 ); ADD( 20 ); ADD( 22 );
    SUB( 15 ); SUB( 23 ); SUB( 23 );                        NEXT; // A4
 
    ADD( 22 ); ADD( 22 ); ADD( 17 ); ADD( 14 ); ADD( 13 ); ADD( 21 ); ADD( 23 );
    SUB( 16 );                                              NEXT; // A5
 
    ADD( 23 ); ADD( 23 ); ADD( 18 ); ADD( 15 ); ADD( 14 ); ADD( 22 );
    SUB( 17 );                                              NEXT; // A6
 
    ADD( 19 ); ADD( 16 ); ADD( 15 ); ADD( 23 );
    SUB( 18 );                                              NEXT; // A7
 
    ADD( 20 ); ADD( 17 ); ADD( 16 );
    SUB( 19 );                                              NEXT; // A8
 
    ADD( 21 ); ADD( 18 ); ADD( 17 );
    SUB( 20 );                                              NEXT; // A9
 
    ADD( 22 ); ADD( 19 ); ADD( 18 );
    SUB( 21 );                                              NEXT; // A10
 
    ADD( 23 ); ADD( 20 ); ADD( 19 );
    SUB( 22 );                                              LAST; // A11
 
cleanup:
    return( ret );
}
#endif /* POLARSSL_ECP_DP_SECP384R1_ENABLED */
 
#undef A
#undef LOAD32
#undef STORE32
#undef MAX32
#undef INIT
#undef NEXT
#undef LAST
 
#endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED ||
          POLARSSL_ECP_DP_SECP256R1_ENABLED ||
          POLARSSL_ECP_DP_SECP384R1_ENABLED */
 
#if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
/*
 * Here we have an actual Mersenne prime, so things are more straightforward.
 * However, chunks are aligned on a 'weird' boundary (521 bits).
 */
 
/* Size of p521 in terms of t_uint */
#define P521_WIDTH      ( 521 / 8 / sizeof( t_uint ) + 1 )
 
/* Bits to keep in the most significant t_uint */
#if defined(POLARSSL_HAVE_INT8)
#define P521_MASK       0x01
#else
#define P521_MASK       0x01FF
#endif
 
/*
 * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
 * Write N as A1 + 2^521 A0, return A0 + A1
 */
static int ecp_mod_p521( mpi *N )
{
    int ret;
    size_t i;
    mpi M;
    t_uint Mp[P521_WIDTH + 1];
    /* Worst case for the size of M is when t_uint is 16 bits:
     * we need to hold bits 513 to 1056, which is 34 limbs, that is
     * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */
 
    if( N->n < P521_WIDTH )
        return( 0 );
 
    /* M = A1 */
    M.s = 1;
    M.n = N->n - ( P521_WIDTH - 1 );
    if( M.n > P521_WIDTH + 1 )
        M.n = P521_WIDTH + 1;
    M.p = Mp;
    memcpy( Mp, N->p + P521_WIDTH - 1, M.n * sizeof( t_uint ) );
    MPI_CHK( mpi_shift_r( &M, 521 % ( 8 * sizeof( t_uint ) ) ) );
 
    /* N = A0 */
    N->p[P521_WIDTH - 1] &= P521_MASK;
    for( i = P521_WIDTH; i < N->n; i++ )
        N->p[i] = 0;
 
    /* N = A0 + A1 */
    MPI_CHK( mpi_add_abs( N, N, &M ) );
 
cleanup:
    return( ret );
}
 
#undef P521_WIDTH
#undef P521_MASK
#endif /* POLARSSL_ECP_DP_SECP521R1_ENABLED */
 
#endif /* POLARSSL_ECP_NIST_OPTIM */
 
#if defined(POLARSSL_ECP_DP_M255_ENABLED)
 
/* Size of p255 in terms of t_uint */
#define P255_WIDTH      ( 255 / 8 / sizeof( t_uint ) + 1 )
 
/*
 * Fast quasi-reduction modulo p255 = 2^255 - 19
 * Write N as A0 + 2^255 A1, return A0 + 19 * A1
 */
static int ecp_mod_p255( mpi *N )
{
    int ret;
    size_t i;
    mpi M;
    t_uint Mp[P255_WIDTH + 2];
 
    if( N->n < P255_WIDTH )
        return( 0 );
 
    /* M = A1 */
    M.s = 1;
    M.n = N->n - ( P255_WIDTH - 1 );
    if( M.n > P255_WIDTH + 1 )
        M.n = P255_WIDTH + 1;
    M.p = Mp;
    memset( Mp, 0, sizeof Mp );
    memcpy( Mp, N->p + P255_WIDTH - 1, M.n * sizeof( t_uint ) );
    MPI_CHK( mpi_shift_r( &M, 255 % ( 8 * sizeof( t_uint ) ) ) );
    M.n++; /* Make room for multiplication by 19 */
 
    /* N = A0 */
    mpi_set_bit( N, 255, 0 );
    for( i = P255_WIDTH; i < N->n; i++ )
        N->p[i] = 0;
 
    /* N = A0 + 19 * A1 */
    MPI_CHK( mpi_mul_int( &M, &M, 19 ) );
    MPI_CHK( mpi_add_abs( N, N, &M ) );
 
cleanup:
    return( ret );
}
#endif /* POLARSSL_ECP_DP_M255_ENABLED */
 
#if defined(POLARSSL_ECP_DP_SECP192K1_ENABLED) ||   \
    defined(POLARSSL_ECP_DP_SECP224K1_ENABLED) ||   \
    defined(POLARSSL_ECP_DP_SECP256K1_ENABLED)
/*
 * Fast quasi-reduction modulo P = 2^s - R,
 * with R about 33 bits, used by the Koblitz curves.
 *
 * Write N as A0 + 2^224 A1, return A0 + R * A1.
 * Actually do two passes, since R is big.
 */
#define P_KOBLITZ_MAX   ( 256 / 8 / sizeof( t_uint ) )  // Max limbs in P
#define P_KOBLITZ_R     ( 8 / sizeof( t_uint ) )        // Limbs in R
static inline int ecp_mod_koblitz( mpi *N, t_uint *Rp, size_t p_limbs,
                                   size_t adjust, size_t shift, t_uint mask )
{
    int ret;
    size_t i;
    mpi M, R;
    t_uint Mp[P_KOBLITZ_MAX + P_KOBLITZ_R];
 
    if( N->n < p_limbs )
        return( 0 );
 
    /* Init R */
    R.s = 1;
    R.p = Rp;
    R.n = P_KOBLITZ_R;
 
    /* Common setup for M */
    M.s = 1;
    M.p = Mp;
 
    /* M = A1 */
    M.n = N->n - ( p_limbs - adjust );
    if( M.n > p_limbs + adjust )
        M.n = p_limbs + adjust;
    memset( Mp, 0, sizeof Mp );
    memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( t_uint ) );
    if (shift != 0 )
        MPI_CHK( mpi_shift_r( &M, shift ) );
    M.n += R.n - adjust; /* Make room for multiplication by R */
 
    /* N = A0 */
    if (mask != 0 )
        N->p[p_limbs - 1] &= mask;
    for( i = p_limbs; i < N->n; i++ )
        N->p[i] = 0;
 
    /* N = A0 + R * A1 */
    MPI_CHK( mpi_mul_mpi( &M, &M, &R ) );
    MPI_CHK( mpi_add_abs( N, N, &M ) );
 
    /* Second pass */
 
    /* M = A1 */
    M.n = N->n - ( p_limbs - adjust );
    if( M.n > p_limbs + adjust )
        M.n = p_limbs + adjust;
    memset( Mp, 0, sizeof Mp );
    memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( t_uint ) );
    if (shift != 0 )
        MPI_CHK( mpi_shift_r( &M, shift ) );
    M.n += R.n - adjust; /* Make room for multiplication by R */
 
    /* N = A0 */
    if (mask != 0 )
        N->p[p_limbs - 1] &= mask;
    for( i = p_limbs; i < N->n; i++ )
        N->p[i] = 0;
 
    /* N = A0 + R * A1 */
    MPI_CHK( mpi_mul_mpi( &M, &M, &R ) );
    MPI_CHK( mpi_add_abs( N, N, &M ) );
 
cleanup:
    return( ret );
}
#endif /* POLARSSL_ECP_DP_SECP192K1_ENABLED) ||
          POLARSSL_ECP_DP_SECP224K1_ENABLED) ||
          POLARSSL_ECP_DP_SECP256K1_ENABLED) */
 
#if defined(POLARSSL_ECP_DP_SECP192K1_ENABLED)
/*
 * Fast quasi-reduction modulo p192k1 = 2^192 - R,
 * with R = 2^32 + 2^12 + 2^8 + 2^7 + 2^6 + 2^3 + 1 = 0x0100001119
 */
static int ecp_mod_p192k1( mpi *N )
{
    static t_uint Rp[] = {
        BYTES_TO_T_UINT_8( 0xC9, 0x11, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
 
    return( ecp_mod_koblitz( N, Rp, 192 / 8 / sizeof( t_uint ), 0, 0, 0 ) );
}
#endif /* POLARSSL_ECP_DP_SECP192K1_ENABLED */
 
#if defined(POLARSSL_ECP_DP_SECP224K1_ENABLED)
/*
 * Fast quasi-reduction modulo p224k1 = 2^224 - R,
 * with R = 2^32 + 2^12 + 2^11 + 2^9 + 2^7 + 2^4 + 2 + 1 = 0x0100001A93
 */
static int ecp_mod_p224k1( mpi *N )
{
    static t_uint Rp[] = {
        BYTES_TO_T_UINT_8( 0x93, 0x1A, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
 
#if defined(POLARSSL_HAVE_INT64)
    return( ecp_mod_koblitz( N, Rp, 4, 1, 32, 0xFFFFFFFF ) );
#else
    return( ecp_mod_koblitz( N, Rp, 224 / 8 / sizeof( t_uint ), 0, 0, 0 ) );
#endif
}
 
#endif /* POLARSSL_ECP_DP_SECP224K1_ENABLED */
 
#if defined(POLARSSL_ECP_DP_SECP256K1_ENABLED)
/*
 * Fast quasi-reduction modulo p256k1 = 2^256 - R,
 * with R = 2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1 = 0x01000003D1
 */
static int ecp_mod_p256k1( mpi *N )
{
    static t_uint Rp[] = {
        BYTES_TO_T_UINT_8( 0xD1, 0x03, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
    return( ecp_mod_koblitz( N, Rp, 256 / 8 / sizeof( t_uint ), 0, 0, 0 ) );
}
#endif /* POLARSSL_ECP_DP_SECP256K1_ENABLED */
 
#endif
 

e-Highlighter

Click to send permalink to address bar, or right-click to copy permalink.

Un-highlight all Un-highlight selectionu Highlight selectionh

Downloads